News

News

Sunday
September, 25

Pushing past pancreatic tumors’ defenses — ScienceDaily

[ad_1]

Our immune systems have the potential to find and destroy cancer cells. But cancer cells can be clever and develop tricks to evade the immune system. Cold Spring Harbor Laboratory Professor Douglas Fearon and his former postdoc ZhiKai Wang found one such trick. Cancer cells weave a deactivating signal into a protective coat of armor that excludes T cells that would otherwise kill them. This immune deactivation pathway offers a promising new therapeutic approach for pancreatic, breast, and colorectal cancers.

T cells patrol the body looking for cancers and pathogens. If they and/or their immune system teammates find an intruder, the T cells are mobilized to attack. Wang, currently a research fellow at the University of Science and Technology of China in Hefei, discovered this mobilization was disabled by a combination of three proteins woven into a protective coating surrounding cancer cells: a signal that usually attracts T cells called CXCL12, a filament called KRT19, and a protein that fuses the former proteins together called TGM2.

The scientists used genetic editing to turn off the production of KRT19 or TGM2 in mouse pancreatic tumors. Without KRT19 or TGM2, the cancer cells lost the CXCL12-KRT19 protection and T cells were able to infiltrate and attack. The pancreatic tumors shrank or disappeared.

Why did this coat of proteins repel T cells from the tumors? Wang says, “It is kind of counterintuitive because CXCL12 is a chemokine (chemical attractant) that attracts immune cells. But we found that CXCL12 is in an unusually high concentration on the surface of the cancer cells, where it does the opposite by making T cells immobile.” CXCL12 usually does its work as a single protein. But at high concentrations on the surface of cancer cells, the protein is in a complex with KRT19 and forms a branch-like network. T cell movement was reduced dramatically by this network.

The study was published in the Proceedings of the National Academies of Sciences. In a previous small clinical study of pancreatic cancer patients, Fearon and collaborators showed that the drug plerixafor (a CXCL12 receptor blocker) increased the infiltration of T cells into patients’ pancreatic tumor tissues. The current study now shows why this immunotherapeutic effect occurs. Fearon and Wang hope CXCL12 and KRT19 will provide new therapeutic targets that boost the immune system’s chances of killing off cancer cells.

Story Source:

Materials provided by Cold Spring Harbor Laboratory. Original written by Luis Sandoval. Note: Content may be edited for style and length.

[ad_2]

Source link

Find us on

Latest articles

- Advertisement - spot_imgspot_img

Related articles

Important 5 Things to Know before Starting Crossfit Training

Exercise is good for health. We all know about it and brands and the health industry agree...

Jason “The Athlete” MacDonald Approved CrossFit for MMA a...

Cross fit is a great exercise that helps in strengthening the body but also helps in building...

Here’s How and Why Boxing Conditioning Can Benefit CrossFit...

When you get into the ring, you never want to give up. It is all about how...

CrossFit World Champion Turned BJJ Blue Belt Explains Benefits...

The world of BJJ is a fascinating yet scary place. People are fascinated about the overall progress...

Lymphatic disorder may cause stillbirth or severe, chronic disease...

In a world first discovery, South Australian researchers have identified a genetic mutation responsible for a...

New fluorescent DNA label reveals nanoscopic cancer features —...

Researchers have developed a new fluorescent label that gives a clearer picture of how DNA architecture...